Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Main subject
Language
Year range
1.
Malaysian Journal of Microbiology ; : 91-101, 2016.
Article in English | WPRIM | ID: wpr-626855

ABSTRACT

Aims: High cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass (LB). The present study aims at developing a local cellulolytic fungal strain through random mutagenesis coupled with the feasibility of solid-state fermentation (SSF) by utilizing agricultural wastes such as oil palm frond (OPF) as the substrate. Methodology and results: Out of 95 wild isolates tested, native fungal strain Aspergillus niger, designated DWA8 was isolated as the top enzymatic secretor. For quantitative enzyme analysis, SSF was conducted using 1x106 spore/mL inoculated onto 5 g of ground OPF, incubated at room temperature for 7 days, with 70% moisture content and an initial medium pH of 7. Random mutagenesis has always been tempting in the enhancement of enzyme production. In this work, the compounded treatment of microwave, ultraviolet (UVC) and Ethyl Methanesulfonate (EMS) have generated an Aspergillus niger MUE3.06 mutant with an overall increase of 114% in CMCase activity, approximately 70% in FPase and Xylanase activity respectively compared with the parental DWA8 strain. Thus this finding is capable to be fully developed as an established mutational scheme to create highly productive filamentous fungus in a cheap, simple and sustainable way. Conclusion, significance and impact of study: It was the first attempt to explore the combine effect of the three popular mutagens upon cellulases and xylanases. It is believed that more diversified of mutagen types induce more diversified mutation pattern (with instructive planning), which is very desirable in creating new enzymes with novel abilities.


Subject(s)
Cellulases
SELECTION OF CITATIONS
SEARCH DETAIL